If a+b+c = 6 ,a 2 + b2 + c2 =12 ,find the value of a3 + b3 + c3 -3abc
Answers
Answered by
5
Answer :
Let us recall algebraic identity to solve this question
- a³ + b³ + c³ - 3abc = ( a + b + c)( a² + b² + c² - ab - bc - ca)
which can be written as
a³ + b³ + c³ - 3abc = ( a + b + c){ a² + b² + c² - ( ab + bc + ca) } ----- eq( 1 )
To find the value we need to know the value of ab + bc + ca.
Let's use another algebraic identity to find the value of ab + bc + ca i.e,
- ( a + b + c)² = a² + b² + c² + 2( ab + bc + ca)
Substitute the give values in the above identity
6² = 12 + 2( ab + bc + ca)
36 = 12 + 2( ab + bc + ca)
36 - 12 = 2( ab + bc + ca)
24 / 2 = ab + bc + ca
ab + bc + ca = 12
Substitute the value of ab + bc + ca and the give values in eq( 1 )
a³ + b³ + c³ - 3abc = 6( 12 - 12 ) = 6( 0 ) = 0
Therefore the value of a³ + b³ + c³ - 3abc is 0.
Similar questions
Social Sciences,
10 hours ago
Math,
10 hours ago
India Languages,
20 hours ago
Social Sciences,
20 hours ago
English,
8 months ago