if a + b + c = 6 ab + bc + ca = 11 find a²+b²+c²
Answers
Answered by
4
Answer:
(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)
6^2 = a^2 + b^2 + c^2 + 2*11
a^2 + b^2 + c^2 = 36 - 22
= 14
Answered by
6
GIVEN :-
- a + b + c = 6.
- ab + bc + ca = 11.
TO FIND :-
- The value of a² + b² + c².
SOLUTION :-
We know that,
→ (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
- [ substitute all the given values ]
→ (6)² = a² + b² + c² + 2(11)
→ 6 × 6 = a² + b² + c² + 2 × 11
→ 36 = a² + b² + c² + 22
→ 36 - 22 = a² + b² + c²
→ a² + b² + c² = 14.
ADDITIONAL INFORMATION :-
➳ ( x + y )² = x² + 2xy + y²
➳ ( x - y )² = x² - 2xy + y²
➳ ( x - y ) ( x -y ) = ( x - y )²
➳ ( x + y ) ( x + y ) = ( x + y )²
➳ x² - y² = ( x + y ) ( x - y )
➳ ( x + y + z )² = x² + y² + z² + 2xy + 2yz + 2zx.
➳ ( x + a ) ( x + b ) = x² + ( a + b)x + ab
Similar questions