Math, asked by kavitachy, 9 months ago

if a+b+c=6& a²+b²+c²=14 find 10(ab+bc+ac) ​

Answers

Answered by aspirant007
1

Answer:

110

Step-by-step explanation:

a+b+c = 6

squaring LHS and RHS,

a²+b²+c²+ 2 (ab+bc+ac) = 36  

(∵ (a+b+c)²=a²+b²+c²+ 2 (ab+bc+ac))

14 + 2(ab+bc+ac) =36    (given, a²+b²+c²=14)

2(ab+bc+ac) = 22

5x2(ab+bc+ac) = 5x22

10(ab+bc+ac) = 110

Answered by arshigupta20
0

Answer:

It's answer will be 110.

Step-by-step explanation:

(a+b+c)² = a²+b²+c²+2ab+2bc+2ca

(6)² = (14)+2(ab+ab+ca)

36 = 14 + 2( ab+bc+ca )

36-14 = 2(ab+bc+ca)

22 = 2(ab + bc + ca)

22/2 = ab+bc+ca

11 = ab+bc+ca

so , value of 10(ab+bc+ca)

=> 10(11) = 110.

Similar questions