if a+b+c=6& a²+b²+c²=14 find 10(ab+bc+ac)
Answers
Answered by
1
Answer:
110
Step-by-step explanation:
a+b+c = 6
squaring LHS and RHS,
a²+b²+c²+ 2 (ab+bc+ac) = 36
(∵ (a+b+c)²=a²+b²+c²+ 2 (ab+bc+ac))
14 + 2(ab+bc+ac) =36 (given, a²+b²+c²=14)
2(ab+bc+ac) = 22
5x2(ab+bc+ac) = 5x22
10(ab+bc+ac) = 110
Answered by
0
Answer:
It's answer will be 110.
Step-by-step explanation:
(a+b+c)² = a²+b²+c²+2ab+2bc+2ca
(6)² = (14)+2(ab+ab+ca)
36 = 14 + 2( ab+bc+ca )
36-14 = 2(ab+bc+ca)
22 = 2(ab + bc + ca)
22/2 = ab+bc+ca
11 = ab+bc+ca
so , value of 10(ab+bc+ca)
=> 10(11) = 110.
Similar questions