if a+b+c=6 &a²+b²+c²=14 find ab+bc+ac
Answers
Answered by
2
Answer:
Given:
a+b+c=6 &a²+b²+c²=14
To find:
ab+bc+ac
Explanation:
=> (a+b+c)^2=a2+b2+c2+2(ab+bc+ca)
=> (6)2=14+2(ab+bc+ca)
=> 36-14=2(ab+bc+ca)
=> 22/2=ab+bc+ca
=> ab+bc+ca=11
=> a^3+b^3+c^3-3abc
=> (a+b+c)(a2+b2+c2-ab-bc-ca)
=> (6)(14-11)
=> (6)(3)
=> 18
Since, a^3+b^3+c^3-3abc=18
36-3abc=18
-3abc=18-36
-3abc=-18
abc=6
Step-by-step explanation:
Answered by
0
Answer:
ab+bc+ca=11
Step-by-step explanation:
=>(a+b+c)²= a²+b²+c² + 2(ab+bc+ca)
=>(6)²=14+2(ab+ bc+ ca) [given, (a+b+c)=6 & a²+b²+c²]
=>36-14=2(ab+ bc +ca)
=>22/2=(ab+bc+ca)
=>ab+bc + ca = 11
Similar questions