Math, asked by kavitachy, 9 months ago

if a+b+c=6 &a²+b²+c²=14 find ab+bc+ac

Answers

Answered by pallavisrinivas2004
2

Answer:

Given:

a+b+c=6 &a²+b²+c²=14

To find:

ab+bc+ac

Explanation:

=> (a+b+c)^2=a2+b2+c2+2(ab+bc+ca)

=> (6)2=14+2(ab+bc+ca)

=> 36-14=2(ab+bc+ca)

=> 22/2=ab+bc+ca

=> ab+bc+ca=11

=> a^3+b^3+c^3-3abc

=> (a+b+c)(a2+b2+c2-ab-bc-ca)

=> (6)(14-11)

=> (6)(3)

=> 18

Since, a^3+b^3+c^3-3abc=18

36-3abc=18

-3abc=18-36

-3abc=-18

abc=6

Step-by-step explanation:

Answered by SuvajitDasgupta
0

Answer:

ab+bc+ca=11

Step-by-step explanation:

=>(a+b+c)²= a²+b²+c² + 2(ab+bc+ca)

=>(6)²=14+2(ab+ bc+ ca) [given, (a+b+c)=6 & a²+b²+c²]

=>36-14=2(ab+ bc +ca)

=>22/2=(ab+bc+ca)

=>ab+bc + ca = 11

Similar questions