if a+b+c=6 and a^2+b^2+c^2=12 find a^3+ b^3 +c^3
Answers
Answered by
0
Answer:
a+b+c= 6 and a ^2 + b^ 2 +c ^ 2 = 12,
Consider the formula - a³+b³+c³- 3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
We have to find ab+bc+ca
given a+b+c = 6
Squaring on both sides we get,
(a+b+c)² = 6²
a²+b²+c² + 2(ab+bc+ca) = 36
2 (ab+bc+ca) = 24
ab + bc + ca = 12
Now, a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-(ab+bc+ca))
a³+b³+c³ =(a+b+c) (a²+b²+c²-(ab+bc+ca)) + 3abc
= 6 ( 12 - 12 ) + 3 abc
= 3abc ( answer )
if the answer is useful pls mark as brainliest.....plssssss and do follow mee
Similar questions
Biology,
5 months ago
Science,
5 months ago
Computer Science,
5 months ago
English,
10 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Science,
1 year ago