if a+b+c=6 and a^2+b^2+c^2=38 then find the value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+3abc
Answers
Step-by-step explanation:
first find abc and substitute
Let us look at the answer:
The answer is -6.
Step-by-step explanation:
a+b+c = 6 ...... (i) and a²+b²+c²= 38 .... (ii)
squaring both sides of ..(i) (a²+b²+c²+2ab+2bc+2ca) = (a+b+c)²
38+2(ab+bc+ca) = 36
2(ab+bc+ca) = -2 ⇒ ab+bc+ca = -1
From .. (ii) b²+c²= 38-a² , a²+b²= 38-c², b²+ c²= 38-b²
We need to find the value of a(b²+c²)+ b(c²+a²) + c( a²+ b²) +3abc
∴ a(b²+c²)+ b(c²+a²) + c( a²+ b²) +3abc = a(38-a²)+ b(38-b²) +c(38-c²) +3abc
= -(a³+b³+c³) +38(a+b+c) +3abc
= -( a³+b³+c³-3abc) +38(a+b+c) ....(iii)
So, we need to find the value of a³+b³+c³-3abc
Using the identity, a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-ab-bc-ac)
so, a³+b³+c³-3abc = (6) {38-(-1)} = 6× 39 = 234
substituting the values in (iii) ,
a(b²+c²)+ b(c²+a²) + c( a²+ b²) +3abc = -234 +38×6 = -234+228 = -6