If a + b + c = 6 and a^2+b^2+c^2=60,then find ab +bc+ca and a^3+b^3+c^3-3abc
Answers
Answered by
53
Answer :-
→ -12 and 432 respectively .
Step-by-step explanation :-
We have,
→ a + b + c = 6 .
And, a² + b² + c² = 60 .
Now, using Identity :-)
→ ( a + b + c )² = a² + b² + c² + 2( ab + bc + ca ) .
→ ( 6 )² = 60 + 2( ab + bc + ca ) .
→ 36 = 60 + 2( ab + bc + ca ) .
→ 36 - 60 = 2( ab + bc + ca ) .
→ ab + bc + ca = -24/2 .
•°• ab + bc + ca = -12 .
Now, using Identity :-)
→ a³ + b³ + c³ - 3abc = ( a + b + c ) ( a² + b² + c² - ( ab + bc + ca ) .
= ( 6 )[ 60 - ( -12 ) ] .
= ( 6 ) ( 60 + 12 ) .
= 6 × 72 .
•°• a³ + b³ + c³ - 3abc = 432 .
Hence, it is solved.
Similar questions