If a+b+c=6 and a power2+b power2+ c power2=14 then find ab+bc+ca
Answers
Answered by
5
Solution:-
Given:-
=> a + b + c = 6
=> a² + b² + c² = 14
To find value of
=> ab + bc + ca
Using this identities
=> (a + b + c)²= a² + b² + c² + 2ab + 2bc + 2ca.
=> ( a + b + c )² = a² + b² + c² + 2( ab + bc + ca )
Now put the value on formula
=> ( 6 )² = 14 + 2( ab + bc + ca )
=> 36 = 14 + 2( ab + bc + ca )
=> 36 - 14 = 2( ab + bc + ca )
=> 22 = 2( ab + bc + ca )
=> ab + bc + ca = 22/2
=> ab + bc + ca = 11
Some more identities
=> (a - b )(a + b ) = a² - b²
=> ( a + b )² = a² + b² + 2ab
=> ( a - b )² = a² + b² - 2ab
=> ( a + b + c)²= a² + b² + c² + 2ab + 2bc + 2ca.
Similar questions