Math, asked by sushmita1nayak, 11 months ago

if a+b+c=6 and a²+b²+c²=14 find a²+b²+c² - 3abc​

Answers

Answered by adrian72182
1

Answer:

7

Step-by-step explanation:

Answered by Anonymous
10

Given a+b+c=6

a^2+b^2+c^2=14

We know that

a^3+b^3+c^3-3abc=(a+b+c) (a^2+b^2+c^2-ab-bc-ac).... Eq1

(a+b+c) ^2=a^2+b^2+c^2+2ab+2bc+2ca

(6)^2=14+2ab+2bc+2ca

36-14=2(ab+bc+ca)

(ab+bc+ca)=22/2

ab+bc+ca=11

Eq1....

a^3+b^3+c^3-3abc=(6){14-(11)}

a^3+b^3+c^3-3abc=6(3)

a^3+b^3+c^3-3abc=18

....... Checkout the question.............

Follow me

Similar questions