if a+ b +c =6 and ab +bc +ca =11 then find the value of a^3+b^3+c^3
Answers
Answered by
0
Answer:
Step-by-step explanation:
let a=3
b=2
c=1
we should check it by
ab+bc+ca=3*2+2*1+1*3
=6+2+3=11
then
a^3+b^3+c^3
3^3+2^3+1^3
27+8+1
36
and if youn want the answer of a^3+b^3+c^3-3abc
then
(a+b+c)^2=6^2
a^2+b^2+c^2+2(ab+bc+ca)=36
a^2+b^2+c^2+2(11)=36
a^2+b^2+c^2=36-22=14
(a^3+b^3+c^3 -3abc)=(a+b+c)(a^2+b^2+c^2-(ab+bc+ca))
6(14-11)
6*3=18
so(a^3+b^3+c^3 -3abc)=18
Similar questions