If a+b+c=6;asquare+b square+csquare=14and a cube + bcube + c cube=36then prove that abc=6
Answers
Answered by
5
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ac)
6^2= 14+2(ab+bc+ac)
36 -14= 2(ab+bc+ac)
22 /2= (ab+bc+ac)
ab+bc+ac=11
now,
a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-(ab+bc+ac))
36–3abc=6(14–11)
36–3abc=18
36–18 =3abc
3abc=18
abc= 6. PROVED
if it is helpful plz mark brainly
Similar questions
Social Sciences,
7 months ago
Political Science,
7 months ago
English,
7 months ago
Physics,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago