if a+b+c=6, find value of (2-a)^3 +(2-b)^3 +(2-c)^3 - 3(2-a)(2-b)(2-c)
Answers
Answered by
3
Answer:
Step-by-step explanation:Now (2-a)^3+(2-b)^3+(2-c)^3–3(2-a)(2-b)(2-c)
={(2-a)+(2-b)+(2-c)}{(2-a)^2+(2-b)^2+(2-c)^2-(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)} (since a^3+b^3+c^3–3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
={2-a+2-b+2-c}{(2-a)^2+(2-b)^2+(2-c)^2–(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}
={6-(a+b+c)}{(2-a)^2+(2-b)^2+(2-c)^2-(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}
={6–6}{(2-a)^2+(2-b)^2+(2-c)^2–(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}
=0×{(2-a)^2+(2-b)^2+(2-c)^2-(2-a)(2-b)-(2-b)(2-c)-(2-c)(2-a)}
=0
Similar questions
Science,
4 months ago
English,
4 months ago
English,
9 months ago
Social Sciences,
9 months ago
Political Science,
1 year ago
Geography,
1 year ago
Science,
1 year ago