if a+b+c=6andab+bc+ca=11.find the value of a3+b3+c3-3abc
Answers
Answer:Given (a + b + c) = 9
Squaring on both the sides, we get
(a + b + c)2 = 92
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
⇒ 2(ab + bc + ca) = 81 – 35 = 46
⇒ ab + bc + ca = 23 → (1)
Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)
= 9(35 – 23)
= 9(12) = 108
Answer:
We know that:
x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)
let;
x=a, y=b, z=c
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)
a3+b3+c3-3abc=6(a2+b2+c2)-(11) (OR) (OR)
a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11 =6(12)-11 =6+12-11
a3+b3+c3-3abc=6x6x6-11 =72-11 =19-11
a3+b3+c3-3abc=216-11 =61 =08
a3+b3+c3-3abc= -205
❣️Hope it will help you.❣️