Math, asked by Aakashika, 1 year ago

if a+b+c=6andab+bc+ca=11.find the value of a3+b3+c3-3abc​

Answers

Answered by mahesh5goodu
3

Answer:Given (a + b + c) = 9

Squaring on both the sides, we get

(a + b + c)2 = 92

⇒ a2 + b2 + c2  + 2(ab + bc + ca) = 81

⇒ 35  + 2(ab + bc + ca) = 81

⇒ 2(ab + bc + ca) = 81 – 35 = 46

⇒ ab + bc + ca = 23  →  (1)

Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)

                                      = 9(35 – 23)

                                      = 9(12) = 108

Answered by Anonymous
11

Answer:

We know that:

x3+y3+z3-3xyz=(x+y+z) (x2+y2+z2-xy-yz-zx)

let;

x=a, y=b, z=c

a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)

a3+b3+c3-3abc=(6)(a2+b2+c2)-(ab+bc+ca)

a3+b3+c3-3abc=6(a2+b2+c2)-(11)                      (OR)              (OR)

a3+b3+c3-3abc=6(a+b+c)(a+b+c)-11              =6(12)-11       =6+12-11

a3+b3+c3-3abc=6x6x6-11                                 =72-11            =19-11

a3+b3+c3-3abc=216-11                                      =61                 =08

a3+b3+c3-3abc= -205

❣️Hope it will help you.❣️

Similar questions