If a+b+c=7 and ab+bc+ca=20, find the value of a^2+b^2+c^2.
Answers
Answered by
26
Answer: a²+b²+c²= 9
Step-by-step explanation:
Given- a+b+c= 7
ab+bc+ca= 20
To find- value of a²+b²+c²
Solution- a+b+c= 7 (Given)
Squaring both sides
(a+b+c)² = 7²
We know that (a+b+c)²= a²+b²+c²+2ab+2bc+2ca
So, using this algebraic identity, we will solve the given question.
(a+b+c)² = 7²
⇒a²+b²+c²+2ab+2bc+2ca= 49
⇒a²+b²+c²+2(ab+bc+ca)= 49 [Taking 2 as common]
⇒a²+b²+c²+2(20)= 49 [∵ ab+bc+ca= 20 (Given)]
⇒a²+b²+c²+40= 49
⇒a²+b²+c²= 49-40 [Transposing]
⇒a²+b²+c²= 9
Hence, a²+b²+c²= 9
Similar questions