If a + b + c = 7 and ab + bc + ca = 20, find the value of a 2 + b 2 + c 2.
Answers
Answered by
176
(a+b+c)^2=(7)^2=49
a^2+b^2+c^2+(ab+bc+ca)=49
a^2+b^2+c^2+2(20)=49
a^2+b^2+c^2=49-40
so answer is 9
a^2+b^2+c^2+(ab+bc+ca)=49
a^2+b^2+c^2+2(20)=49
a^2+b^2+c^2=49-40
so answer is 9
Answered by
15
Given:
The value of a + b + c = 7 and ab + bc + ca = 20.
To Find:
The value of a² + b² + c² is?
Solution:
The given problem can be solved using algebraic expansions.
1. The values of a + b + c is 7 and ab + bc + ca is 20.
2. Consider the algebraic from (a + b + c)²,
=> Expand the expression,
=> ( a + b + c )² = a² + b² + c² + 2( ab + bc + ca ).
3. Substitute the values of a + b + c and ab + bc + ca in the above form,
=> (7)² = a² + b² + c² + 2( 20 ),
=> 49 = a² + b² + c² + 40,
=> 49 - 40 = a² + b² + c²,
=> a² + b² + c² = 9.
Therefore, the value of a² + b² + c² is 9.
Similar questions