Math, asked by lavv78, 9 months ago

If a+b+c= 7 and ab + bc + ca = 20, find the value of of
{a}^{2} +  {b}^{2}   +  {c}^{2}

Answers

Answered by atahrv
0

Answer:

a²+b²+c²=9

Step-by-step explanation:

Given:-

a+b+c=7 & ab+bc+ca=20

To Find:-

a²+b²+c²

Formula Used:-

(a+b+c)²=a²+b²+c²+2(ab+bc+ca)

Solution:-

(a+b+c)²=a²+b²+c²+2(ab+bc+ca)

(7)²=a²+b²+c²+2(20)

49=a²+b²+c²+40

a²+b²+c²=49-40

a²+b²+c²=9

Answered by TheLegendRamKING
3

Step-by-step explanation:

 { (a + b + c)   }^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca

 {7}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 40 \\ so \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 40 - 49 =  - 9 \\

{a}^{2} + {b}^{2} + {c}^{2} = -9

Similar questions