If a+b+c=8 ab+bc+ca=15 then find the value of a3+b3+c3-3abc
Answers
Answered by
31
We have the formula
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ac)
we can write it as
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - (ab + bc + ac))
Now we have
a + b + c = 8
ab + bc + ac = 15
Putting values we get
a³ + b³ + c³ - 3abc = 8(a² + b² + c² - 15)....(1)
Now, we also know that
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Putting values we get
8² = a² + b² + c² + 2(15)
a² + b² + c² = 64 - 30
a² + b² + c² = 34
Putting this in (1), we get
a³ + b³ + c³ - 3abc = 8(34 - 15)
a³ + b³ + c³ - 3abc = 8(19)
a³ + b³ + c³ - 3abc = 152
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ac)
we can write it as
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - (ab + bc + ac))
Now we have
a + b + c = 8
ab + bc + ac = 15
Putting values we get
a³ + b³ + c³ - 3abc = 8(a² + b² + c² - 15)....(1)
Now, we also know that
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Putting values we get
8² = a² + b² + c² + 2(15)
a² + b² + c² = 64 - 30
a² + b² + c² = 34
Putting this in (1), we get
a³ + b³ + c³ - 3abc = 8(34 - 15)
a³ + b³ + c³ - 3abc = 8(19)
a³ + b³ + c³ - 3abc = 152
Answered by
1
Answer:
Step-by-step explanation:
We have the formula
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ac)
we can write it as
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - (ab + bc + ac))
Now we have
a + b + c = 8
ab + bc + ac = 15
Putting values we get
a³ + b³ + c³ - 3abc = 8(a² + b² + c² - 15)....(1)
Now, we also know that
(a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
Putting values we get
8² = a² + b² + c² + 2(15)
a² + b² + c² = 64 - 30
a² + b² + c² = 34
Putting this in (1), we get
a³ + b³ + c³ - 3abc = 8(34 - 15)
a³ + b³ + c³ - 3abc = 8(19)
a³ + b³ + c³ - 3abc = 152
Similar questions