If a + b + c = 8, ab + bc + ca = 21, then find the value of a2 + b2 + c2 .
Answers
Answered by
0
Step-by-step explanation:
Given:
ab + bc + ca = 8 and a2 + b2 + c2 = 20
Formula used:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
Calculation:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ (a + b + c)2 = 20 + 2 × 8 = 36
⇒ (a + b + c) = 6
Now,
1/2 × (a + b + c)[(a – b)2 + (b – c)2 + (c – a)2]
⇒ 1/2(a + b + c)(a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ac)
⇒ 1/2(a + b + c)[2(a2 + b2 + c2) – 2(ab + bc + ac)]
Now substituting the values,
⇒ (a + b + c)[(a2 + b2 + c2) – (ab + bc + ac)]
⇒ 6(20 – 8)
⇒ 6 × 12 = 72
∴ The required answer is 72.
Similar questions