if a+b+c = 8 and ab + bc + ca =16 then find a² + b²+ c²
Answers
Answered by
22
Answer:-
Given:-
- (a + b + c) = 8
- ab + bc + ca = 16
To Find: Value of (a² + b² + c²)
We know,
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Or,
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
[Taking 2 common in the RHS.]
Putting the values:-
(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
→ (8)² = a² + b² + c² + 2(16)
→ a² + b² + c² = 64 - 32
→ a² + b² + c² = 32
∴ a² + b² + c² = 32.
Answered by
3
Answer:
(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
(a+b+c)^2 = a^2 + b^2 + c^2 + 2 ( ab+bc+ca)
(8)^2 = a^2 + b^2 + c^2 + 2(16)
64 = a^2 + b^2 + c^2 + 32
64 - 32 = a^2 + b^2 + c^2
32 = a^2 + b^2 + c^2
Similar questions
Math,
4 months ago
Biology,
9 months ago
Social Sciences,
9 months ago
Math,
1 year ago
Economy,
1 year ago