Math, asked by zaidinasreen420, 5 months ago

if a+b+c=8 and ab + bc+ ca=17, then find the value of a²+ b²+ c²​

Answers

Answered by hemanth12313
2

Hope this is helpful

Please Mark it as Brainlist answer

Attachments:
Answered by SuitableBoy
30

{\huge{\boxed{\boxed{\mathcal{\pink{QUESTION\ddot{\smile}}}}}}}

If a+b+c = 8 and ab+bc+ca = 17 , then find the value of a²+b²+c² .

{\huge{\boxed{\boxed{\red{\mathcal{ANSWER\checkmark}}}}}}

Concept :

• In these type of Questions , we just use the formulas to solve .

• You must remember the formulas , which we have to use in the question .

• ( a + b + c )² = a² + b² + c² + 2( ab + bc + ca )

We have :

  • a + b + c = 8
  • ab + bc + ca = 17

To Find :

  • a² + b² + c² = ?

Solution :

 \rm \:  {a} + b + c = 8

 \tt \: squaring \: both \: sides.

 \mapsto \rm \:  {(a + b + c)}^{2}  =  {8}^{2}

 \mapsto \rm \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2(ab + bc + ca) = 64

Since ,

We have the value of (ab + bc + ca) so ,

Put its value in this equation .

 \mapsto \rm  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 2 \times 17 = 64

 \mapsto \rm \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  + 34 = 64

 \mapsto \rm \:  {a}^{2}  +  {b }^{2}  +  {c}^{2}  = 64 - 34

 \mapsto \boxed{ \rm \:  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 30}

So , the answer would be 30 .

 \\

Some Important Formulas :

  • (a+b)² = a² + b² + 2ab
  • (a-b)² = a² + b² - 2ab
  • (a+b+c)² = a² + b² + c² + 2(ab + bc + ca)
  • (a+b-c)² = a² + b² + c² + 2( ab - bc - ac )
  • (a-b-c)² = a² + b² + c² + 2(-ab + bc - ac)
  • (a-b+c)² = a² + b² + c² + 2(-ab-bc+ac)
  • (-a-b-c)² = (a+b+c)²

Similar questions