If(a+b+c)=8 and (ab+bc+ca)=19 find (a square b square c square)
Answers
Answered by
2
using (a+b+c)^2= a^2+b^2+c^2 +2ab+2bc+2ca
64 -2(19)
64-38
26
64 -2(19)
64-38
26
Answered by
3
(a+b+c)=8
(ab+bc+ac)=19
we know that
(a+b+c)^2=a^2+b^2+c^2+2 (ab+bc+ac)
(8)^2=a^2+b^2+c^2+2 (19)
64=a^2+b^2+c^2+38
a^2+b^2+c^2=64-38
=26
so your answer is 26
(ab+bc+ac)=19
we know that
(a+b+c)^2=a^2+b^2+c^2+2 (ab+bc+ac)
(8)^2=a^2+b^2+c^2+2 (19)
64=a^2+b^2+c^2+38
a^2+b^2+c^2=64-38
=26
so your answer is 26
Similar questions