If a + b + c = 8 and ab + bc + ca = 19, then find a2+b2+c2
#No - Spams!
Answers
Answered by
7
Given:-
a+b+c=8 -----(1)
ab+bc+ca=19---(2)
By algebraic identity:-
a²+b²+c² = (a+b+c)²-2(ab+bc+ca)
= 8²-2×19 [From (1) & (2)]
= 64 - 38
Therefore,
a^2 + b^ 2 +c^ 2 =26
Answered by
6
If a + b + c = 8 and ab + bc + ca = 19, then find a²+b²+c²
____________________
The value of a² + b² + c² = 26
___________________
Given : a + b + c = 8 and ab + bc + ca = 19
To find : The value of a² + b² + c²
Solution : We know that,
( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
After taking 2 common,
=> (a + b + c)² = a² + b² + c² + 2( ab + bc + ca )
Now, put the given values in the above identity.
=> ( 8 )² = a² + b² + c² + 2(19)
=> 64 = a² + b² + c² + 38
=> 64 - 38 = a² + b² + c²
=> a² + b² + c² = 26 ( required answer )
______________________
Similar questions
English,
6 months ago
Science,
6 months ago
Business Studies,
6 months ago
Computer Science,
1 year ago
Math,
1 year ago
English,
1 year ago
Science,
1 year ago