Math, asked by Tejapoosa7871, 9 months ago

if a+b+c=8 and ab+bc+ca=25, find a square+b square+csquare

Answers

Answered by adityak280505
0

a+b+c=8, ab+bc+ca=25

using the identity

a^2+b^2+c^2=a+b+c+2(ab+bc+ca)

substituting

a^2+b^2+c^2=8+2(25)

a^2+b^2+c^2=8+50

a^2+b^2+c^2=58

Answered by atahrv
43

Answer :

\large{\star\:\:\boxed{\bf{a^2\:+\:b^2\:+c^2\:\:=\:\:14}}\:\:\star}

Explanation :

Given :–

  • a + b + c = 8
  • ab + bc + ca = 25

To Find :–

  • a² + b² + c² = ?

Formula Applied :–

  • \boxed{\star\:\:\bf{(a\:+\:b\:+\:c)^2\:=\:a^2\:+\:b^2\:+\:c^2\:+\:2(ab\:+\:bc\:+\:ca)}\:\:\star}

Solution :–

We have ,

  • a + b + c = 8
  • ab + bc + ca = 25

Putting these values in the Formula :

\rightarrow\sf{(a\:+\:b\:+\:c)^2\:=\:a^2\:+\:b^2\:+\:c^2\:+\:2(ab\:+\:bc\:+\:ca)}

\rightarrow\sf{(8)^2\:=\:a^2\:+\:b^2\:+\:c^2\:+\:2(25)}

\rightarrow\sf{64\:=\:a^2\:+\:b^2\:+\:c^2\:+\:50}

\rightarrow\sf{a^2\:+\:b^2\:+\:c^2\:=\:64\:-\:50}

\rightarrow\boxed{\bf{a^2\:+\:b^2\:+\:c^2\:=\:14}}

∴ The value of a² + b² + c² is 14 .

More Formulae :-

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

  • a³ + b³ + c³ - 3abc = (a + b +c)(a² +b² + c² - ab - bc - ca)
  • [ Note : If a + b + c = 0 then a³ + b³ + c³ = 3abc ]
Similar questions