if a+b+c=8 and ab+bc+ca=25, find a square+b square+csquare
Answers
Answered by
0
a+b+c=8, ab+bc+ca=25
using the identity
a^2+b^2+c^2=a+b+c+2(ab+bc+ca)
substituting
a^2+b^2+c^2=8+2(25)
a^2+b^2+c^2=8+50
a^2+b^2+c^2=58
Answered by
43
Answer :
Explanation :
Given :–
- a + b + c = 8
- ab + bc + ca = 25
To Find :–
- a² + b² + c² = ?
Formula Applied :–
Solution :–
We have ,
- a + b + c = 8
- ab + bc + ca = 25
Putting these values in the Formula :
∴ The value of a² + b² + c² is 14 .
More Formulae :-
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ + c³ - 3abc = (a + b +c)(a² +b² + c² - ab - bc - ca)
- [ Note : If a + b + c = 0 then a³ + b³ + c³ = 3abc ]
Similar questions
Science,
4 months ago
English,
4 months ago
World Languages,
4 months ago
Hindi,
1 year ago
Math,
1 year ago