If a+b+c=8 and ab+bc+cd=19 , find a^2+b^2+c^2.
Answers
Answered by
0
I think there is a mistake in typing (ab+bc+ca), you have written cd
(a+b+c)=8
Square on both sides,
(a+b+c)²=8²
a²+b²+c²+2(ab+bc+ca) =64
a²+b²+c²+2*19=64
a²+b²+c²=64-38
a²+b²+c²=26
(a+b+c)=8
Square on both sides,
(a+b+c)²=8²
a²+b²+c²+2(ab+bc+ca) =64
a²+b²+c²+2*19=64
a²+b²+c²=64-38
a²+b²+c²=26
Vanshika08112003:
It's 26 not 28......there is mistake in ur subtraction
Answered by
0
It should be ab+bc+cd instead of ab+bc+cd we know,
(a+b+c)² = a²+b²+c²+2(ab+bc+cd)
Using this identity let's solve, putting values we get,
(8)²= a²+b²+c²+2(19)
64= a²+b²+c²+38
64-38 = a²+b²+c²
a²+b²+c²= 26<------ Answer
hope this helps you
(a+b+c)² = a²+b²+c²+2(ab+bc+cd)
Using this identity let's solve, putting values we get,
(8)²= a²+b²+c²+2(19)
64= a²+b²+c²+38
64-38 = a²+b²+c²
a²+b²+c²= 26<------ Answer
hope this helps you
Similar questions