If a+b+c=9,a²+b²+c²=35 find the value of a³+b³+c³-3abc
Answers
Answered by
37
(a+b+c)²=9²=81
a²+b²+c²+2ab+2bc+2ca=81
a²+b²+c²+2ab+2bc+2ca-(a²+b²+c²)=81-35
2ab+2bc+2ca=46
2(ab+bc+ca)=46
(ab+bc+ca)=23
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
=9(35-(ab+bc+ca))
=9(35-23)
=9(12)=108
a²+b²+c²+2ab+2bc+2ca=81
a²+b²+c²+2ab+2bc+2ca-(a²+b²+c²)=81-35
2ab+2bc+2ca=46
2(ab+bc+ca)=46
(ab+bc+ca)=23
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
=9(35-(ab+bc+ca))
=9(35-23)
=9(12)=108
Answered by
25
Formula:
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Here:
a+b+c = 9
a²+b²+c² = 35
=> a+b+c=9
Squaring both sides we get:
=> (a+b+c)² = (9)²
=> a²+b²+c²+2(ab+bc+ca) = 81
Putting a²+b²+c² = 35
=> 35 +2(ab+bc+ca) = 81
=> 2(ab+bc+ca) = 81-35
=> ab+bc+ca = 46/2
=> ab+bc+ca = 23
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Putting values in R.H.S we get;
= 9(35-23)
= 9(12)
= 108
Pls Mark as brainliest answer and
follow me
Similar questions