If a + b + c = 9, ab + bc + ca = 26, a3 + b3 = 91, b3 + c3 = 72 and c3 + a3 = 35, then what is the value of abc?
Answers
Application of Algebraic identities
Answer: Value of abc is 24.
Explanation:
given that
a + b + c = 9
ab + bc + ca = 26
a³ + b³ = 91,
b³ + c³ = 72
c³ + a³ = 35
need to calculate abc
As a³ + b³ = 91, b³ + c³ = 72 and c³ + a³ = 35 , adding this three expression we get
a³ + b³ + b³ + c³ + c³ + a³ = 91 +72+35
=> 2a³ + 2b³ + 2c³ = 198
=> 2( a³ + b³ + c³ ) = 198
=> a³ + b³ + c³ = 198/2
=> a³ + b³ + c³ = 99 ---------(1)
Now consider following algebraic identity
( a+ b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
=> ( a+ b + c)² - 2( ab + bc + ca ) = a² + b² + c²
Since a + b + c = 9 and ab + bc + ca = 26
=> 9² - 2( 26) = a² + b² + c²
=> 81 - 52 = a² + b² + c²
=> a² + b² + c² = 29 --------(2)
Now consider following algebraic identity
a³ + b³ + c³ -3abc = ( a+ b + c ) ( a² + b² + c² - ( ab + bc + ca ) )
On sustituing given values of ( a+ b + c ) , (ab + bc + ca ) and calculated values of a³ + b³ + c³ from (1) and a² + b² + c² from (2) we get
99 - 3abc = (9) ( 29 - 26 )
=> 99 - 3abc = 9 x 3
=> 99 - 27 = 3abc
=> 72 = 3abc
=>abc = 72/3
=>abc = 24
Hence value of abc is 24.
#answerwithqualtity
#BAL
Answer:
24
Step-by-step explanation:
i)
..ii)
..iii)
Add i),ii) and iii)
..iv)
Consider the equation, ..v)
Put a+b+c=9 , ab+bc+ca = 26 and iv) in v)