if a+b+c=9,ab+bc+ca=26,then find the value of a3+b3+c3-3abc
Answers
Answered by
13
a+b+c=9,ab+bc+ca=26
⇒ a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)
= 9² - 2(26)
= 81 - 52
= 29
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - (ab + bc + ca)
= 9 (29 - 26)
= 9 (3)
= 27
Hope it helps
⇒ a² + b² + c² = (a + b + c)² - 2(ab + bc + ca)
= 9² - 2(26)
= 81 - 52
= 29
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - (ab + bc + ca)
= 9 (29 - 26)
= 9 (3)
= 27
Hope it helps
Answered by
5
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions