Math, asked by siddhantsharma744, 3 days ago

If a+b+c=9 and a^2 + b^2 + c^2 = 35 , find the value of a^3+b^3+c^3 - 3abc .

Answers

Answered by santhoshpodalada82
0

Answer:

GIVEN:-

If a+b+c = 9 and a²+b²+c²= 35.

TO FIND:-

a³+b³+c³-3abc.

IDENTITIES USED:-

{\boxed{\rm{(a+b+c)^2}}}

(a+b+c)

2

{\boxed{\rm{a^3+b^3+c^3-3abc}}}

a

3

+b

3

+c

3

−3abc

.

Now,

First we have to find the value of ab+bc+ac.

\implies\rm{(a+b+c)^2=a^2+b^2+2(ab+bc+ac)}⟹(a+b+c)

2

=a

2

+b

2

+2(ab+bc+ac)

\implies\rm{(9)^2=35+2(ab+bc+ac)}⟹(9)

2

=35+2(ab+bc+ac)

\implies\rm{81-35=2(ab+bc+ac)}⟹81−35=2(ab+bc+ac)

\implies\rm{46=2(ab+bc+ac)}⟹46=2(ab+bc+ac)

\implies\rm{ab+bc+ac=23}⟹ab+bc+ac=23 .

Answered by Yamini589
5

\huge \mathcal\purple {--- ♡----}\mathcal\pink{}

\huge \mathcal\red {Ans}\mathcal\pink{wer}

Solved in the attachment

\huge \mathcal\red {----♡---}\mathcal\pink{}

Attachments:
Similar questions