If a+b+c=9 and a^2 + b^2 + c^2 = 35 , find the value of a^3+b^3+c^3 - 3abc .
Answers
Answered by
0
Answer:
GIVEN:-
If a+b+c = 9 and a²+b²+c²= 35.
TO FIND:-
a³+b³+c³-3abc.
IDENTITIES USED:-
{\boxed{\rm{(a+b+c)^2}}}
(a+b+c)
2
{\boxed{\rm{a^3+b^3+c^3-3abc}}}
a
3
+b
3
+c
3
−3abc
.
Now,
First we have to find the value of ab+bc+ac.
\implies\rm{(a+b+c)^2=a^2+b^2+2(ab+bc+ac)}⟹(a+b+c)
2
=a
2
+b
2
+2(ab+bc+ac)
\implies\rm{(9)^2=35+2(ab+bc+ac)}⟹(9)
2
=35+2(ab+bc+ac)
\implies\rm{81-35=2(ab+bc+ac)}⟹81−35=2(ab+bc+ac)
\implies\rm{46=2(ab+bc+ac)}⟹46=2(ab+bc+ac)
\implies\rm{ab+bc+ac=23}⟹ab+bc+ac=23 .
Answered by
5
Solved in the attachment
Attachments:
Similar questions