If a+b+c=9 and a^2+b^2+c^2=35 find the value of (a^3+b^3+c^3-3abc)
Answers
Answered by
20
Given (a + b + c) = 9
Squaring on both the sides, we get
(a + b + c)2 = 92
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
⇒ 2(ab + bc + ca) = 81 – 35 = 46
⇒ ab + bc + ca = 23 → (1)
Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)
= 9(35 – 23)
= 9(12) = 108
Squaring on both the sides, we get
(a + b + c)2 = 92
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 81
⇒ 35 + 2(ab + bc + ca) = 81
⇒ 2(ab + bc + ca) = 81 – 35 = 46
⇒ ab + bc + ca = 23 → (1)
Recall that a3+b3+c3-3abc = (a + b + c)( a2 + b2 + c2 – ab – bc – ca)
= 9(35 – 23)
= 9(12) = 108
Answered by
4
ANSWER
a+b+c=9 and a
2
+b
2
+c
2
=35
Using formula,
(a+b+c) 2
=a2+b 2+c 2+2(ab+bc+ca)
9 2=35+2(ab+bc+ca)
2(ab+bc+ca)=81−35=46
(ab+bc+ca)=23
using formula,
(a3+b3 +c3)−3abc=(a 2+b 2+c 2
-ab−bc−ca)(a+b+c)
a 3 +b 3+c 3
−3abc=(35−23)×9=9×12=108
Answer108
Similar questions