if a+b+c=9 and a^2+b^2+c^2 =35,find the value of a^3+b^3+c^3-3abc.
Answers
Answered by
4
Given a + b + c = 9 and a^2 + b^2 + c^2 = 35.
Let us consider, a + b + c = 9.
On squaring both sides, we get
= > (a + b + c)^2 = (9)^2
= > a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 81
= > 35 + 2(ab + bc + ca) = 81
= > 2(ab + bc + ca) = 81 - 35
= > 2(ab + ca + ca) = 46
= > ab + bc + ca = 23.
Now,
We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
= (9)(35 - 23)
= 9(12)
= 108.
Hope this helps!
Let us consider, a + b + c = 9.
On squaring both sides, we get
= > (a + b + c)^2 = (9)^2
= > a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 81
= > 35 + 2(ab + bc + ca) = 81
= > 2(ab + bc + ca) = 81 - 35
= > 2(ab + ca + ca) = 46
= > ab + bc + ca = 23.
Now,
We know that a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)
= (9)(35 - 23)
= 9(12)
= 108.
Hope this helps!
siddhartharao77:
;-)
Answered by
0
here is the solution.........
Attachments:
Similar questions