if a+b+c=9 and a^2+b^2+c^2=35, find the value of a^3+b^3+c^3-3abc.
Answers
Answered by
0
a+b+c=9 and a2+
+b2+c2=35
Using formula,
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
92=35+2(ab+bc+ca)
2(ab+bc+ca)=81−35=46
(ab+bc+ca)=23
using formula,
(a3+b3+c3)−3abc=(a2+b2+c2−ab−bc−ca)(a+b+c)
a3+b3+c3−3abc=(35−23)×9=9×12=108
Answer (B) 108
Similar questions