Math, asked by mgmaluminium, 9 months ago

If a + b + c = 9 and a^2 + b^2 + c^2 = 35, then find the value of a^3 + b^3 + c^3 – 3abc.

Answers

Answered by Anonymous
7

ANSWER IN ATTACHMENT:

Attachments:
Answered by Anonymous
6

GIVEN:-

  • If a+b+c = 9 and a²+b²+c²= 35.

TO FIND:-

  • a³+b³+c³-3abc.

IDENTITIES USED:-

  • {\boxed{\rm{(a+b+c)^2}}}

  • {\boxed{\rm{a^3+b^3+c^3-3abc}}}.

Now,

  • First we have to find the value of ab+bc+ac.

\implies\rm{(a+b+c)^2=a^2+b^2+2(ab+bc+ac)}

\implies\rm{(9)^2=35+2(ab+bc+ac)}

\implies\rm{81-35=2(ab+bc+ac)}

\implies\rm{46=2(ab+bc+ac)}

\implies\rm{ab+bc+ac=23}.

Now again,

\implies\rm{a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)}

\implies\rm{a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-(ab+ac+bc)}

\implies\rm{a^3+b^3+c^3-3abc=(9)(35-23)}

\implies\rm{a^3+b^3+c^3-3abc=9\times{12}}

\implies\rm{a^3+b^3+c^3-3abc=108}

Hence, The value is 108.

\boxed{\begin{minipage}{8cm} .....\bf{some useful identities}\\ \\(a+b)^2=a^2+b^2+2ab\\ \\(a-b)^2=a^2-2ab+b^2\\ \\a^2-b^2=(a+b)(a-b)\end{minipage}}

Similar questions