If a+b+c=9 and a2+b2+c2= 35 , find the value of (a3+ 3+c3=3abc
Answers
Answered by
1
Step-by-step explanation:
Given,
a + b + c = 9 ...(i)
a² + b² + c² = 35 ...(ii)
➽ (a + b + c)² - 2 (ab + bc + ca) = 35
➽ 9² - 2 (ab + bc + ca) = 35
➽ 2 (ab + bc + ca) = 81 - 35
➽ 2 (ab + bc + ca) = 46
➽ ab + bc + ca = 23 ...(iii)
Now,
a³ + b³ + c³ - 3abc
= (a + b + c) (a² + b² + c² - ab - bc - ca)
= (a + b + c) {(a² + b² + c²) - (ab + bc + ca)}
= 9 (35 - 23), using (i), (ii) and (iii)
= 9 × 12
= 108
Mark this as BRAINLIST
Similar questions
Biology,
3 months ago
Computer Science,
3 months ago
Social Sciences,
3 months ago
English,
6 months ago
English,
6 months ago
History,
1 year ago
Psychology,
1 year ago
Physics,
1 year ago