If a+b+c = 9 and a2 +b2+c2 =35 find the value of a3+b3+c3 – 3abc
Answers
ANSWER:
- Value of a³+b³+c³-3abc = 108
GIVEN:
- a+b+c = 9
- a²+b²+c² = 35
TO FIND:
- a³+b³+c³-3abc
SOLUTION:
Formula:
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Here:
a+b+c = 9
a²+b²+c² = 35
=> a+b+c=9
Squaring both sides we get:
=> (a+b+c)² = (9)²
=> a²+b²+c²+2(ab+bc+ca) = 81
Putting a²+b²+c² = 35
=> 35 +2(ab+bc+ca) = 81
=> 2(ab+bc+ca) = 81-35
=> ab+bc+ca = 46/2
=> ab+bc+ca = 23
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Putting values in R.H.S we get;
= 9(35-23)
= 9(12)
= 108
ANSWER:
Value of a³+b³+c³-3abc = 108
GIVEN:
a+b+c = 9
a²+b²+c² = 35
TO FIND:
a³+b³+c³-3abc
SOLUTION:
Formula:
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Here:
a+b+c = 9
a²+b²+c² = 35
=> a+b+c=9
Squaring both sides we get:
=> (a+b+c)² = (9)²
=> a²+b²+c²+2(ab+bc+ca) = 81
Putting a²+b²+c² = 35
=> 35 +2(ab+bc+ca) = 81
=> 2(ab+bc+ca) = 81-35
=> ab+bc+ca = 46/2
=> ab+bc+ca = 23
=> a³+b³+c³-3abc = (a+b+c)[a²+b²+c²-(ab+bc+ca)]
Putting values in R.H.S we get;
= 9(35-23)
= 9(12)
= 108.