Math, asked by dhanrajrtgh, 10 months ago

if a+b+c=9 and a2+b2+c2=35 find the value of a3+b3+c3=3abc

Answers

Answered by nigampratik9
0

Answer:

value. 264ksg hope this helps you

Answered by amitnrw
2

Given : a+b+c=9 and a2+b2+c2=35

To find : value of a3+b3+c3-3abc

Solution:

a+b+c=9  

Squaring  both sides

=> a² + b² + c² + 2(ab + bc + ca) = 81

=> 35 + 2(ab + bc + ca) = 81

=> 2(ab + bc + ca) = 46

=> ab + bc + ca = 23

a³ + b³ + c³ - 3abc  = (a + b + c) (a² + b² + c²  - ab - bc - ca)

=>  a³ + b³ + c³ - 3abc  = 9 ( 35 - 23)

=> a³ + b³ + c³ - 3abc  = 9 (12)

=> a³ + b³ + c³ - 3abc  = 108

a³ + b³ + c³ - 3abc  = 108

Learn more:

If a+b+c =11 and (ab+bc+ca)=20,then find (se+b3+c3-3abc)

https://brainly.in/question/5441734

If a+b+c=6 and a2+b2+c2=14 and a3+b3+c3=36 find value of abc ...

https://brainly.in/question/5958601

Similar questions