If a+b+c=9 and a2+b2+c2=35 find the value of a3+b3+c3-3abc
Answers
Answered by
449
Given,
a + b + c = 9 ...(i)
a² + b² + c² = 35 ...(ii)
➽ (a + b + c)² - 2 (ab + bc + ca) = 35
➽ 9² - 2 (ab + bc + ca) = 35
➽ 2 (ab + bc + ca) = 81 - 35
➽ 2 (ab + bc + ca) = 46
➽ ab + bc + ca = 23 ...(iii)
Now,
a³ + b³ + c³ - 3abc
= (a + b + c) (a² + b² + c² - ab - bc - ca)
= (a + b + c) {(a² + b² + c²) - (ab + bc + ca)}
= 9 (35 - 23), using (i), (ii) and (iii)
= 9 × 12
= 108
#
Answered by
203
a + b + c = 9
(a + b + c)² = 9²
a² + b² + c² + 2(ab + bc + ca) =81
35 + 2(ab + bc + ca) 81
2(ab + bc + ca) = 81 - 35 =46
ab + bc + ca = 46/2 = 23
=========================
We know,
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
Putting the given value,
(9)[35-1(23)]
9(35-23)
9(12)
108
I hope this will help you
(-:
(a + b + c)² = 9²
a² + b² + c² + 2(ab + bc + ca) =81
35 + 2(ab + bc + ca) 81
2(ab + bc + ca) = 81 - 35 =46
ab + bc + ca = 46/2 = 23
=========================
We know,
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
Putting the given value,
(9)[35-1(23)]
9(35-23)
9(12)
108
I hope this will help you
(-:
Similar questions
Sociology,
8 months ago
Math,
8 months ago
Social Sciences,
1 year ago
Math,
1 year ago
Math,
1 year ago