If a + b + c = 9 and a²+b²+c²= 35, find the value of a³+b³ +c³-3abc.
(Solution is *108*. To be the BRAINLIEST provide right and detailed steps)
Answers
Answered by
82
Given that:
• a + b + c = 9
• a²+b²+c²= 35
To find:
• The value of a³+b³ +c³-3abc.
Solution:
• Using formula
» a³+b³+c³-3abc = (a+b+c)
[a²+b²+c²-(ab+bc+ca)]
Here,
a+b+c= 9
a²+b²+c² = 35
» a+b+c=9
• Squaring both sides we get:
» (a+b+c)² = (9)²
» a²+b²+c²+2(ab+bc+ca) = 81
• Putting a²+b²+c² = 35
» 35 +2(ab+bc+ca) = 81
» 2(ab+bc+ca) = 81-35
» ab+bc+ca = 46/2
» ab+bc+ca = 23
» a³+b³+c³-3abc = = (a+b+c)
[a²+b²+c²-(ab+bc+ca)]
• Putting values in R.H.S we get;
= 9(35-23)
= 9(12)
= 108
Therefore, the value of a³+b³ +c³-3abc is 108.
Similar questions