If a + b + c = 9 and a²+b²+c²= 35, find the value of a³+b³ +c³-3abc. (Solution is *108*)
Answers
Answered by
2
Step-by-step explanation:
Let,
a + b + c = 9 (1)
a² + b² + c² = 35 (2)
Squaring both sides
(a + b + c)² = (9)²
(a + b + c)² = a² + 2ab + 2ac + b² + 2bc + c²
a² + 2ab + 2ac + b² + 2bc + c² = 81
(a² + b² + c²) + 2ab + 2ac + 2bc = 81
Taking 2 as common
(a² + b² + c²) + 2(ab + ac + bc) = 81
From 2
(35) + 2(ab + ac + bc) = 81
2(ab + ac + bc) = 81 - 35
2(ab + ac + bc) = 46
ab + ac + bc = 46/2
ab + ac + bc = 23 (3)
Now
a³ + b³ + c³ - 3abc
a + b + c × a² + b² + c² - ab - ac - bc
(a + b + c)(a² + b² + c²) - (ab + ac + bc)
From 1,2 and 3
(9)(35 - 23)
(9)(12)
108
Answered by
0
=
Similar questions