Math, asked by Anonymous, 1 year ago

If a+b+c = 9 and ab + bc + ac = 26. Find a^2 + b^2 + c^2​

Answers

Answered by kratika29
22

Answer:

(a+b+c)² = a² + b² + c² + 2(ab+bc+ca)

Given:

a+b+c = 9 & ab+bc+ca = 26

Now putting the values in the above formula,

We get,

(9)² = a² + b² + c² + 2×26

81 = (a² +b² +c²) + 52

(a² +b²+c²) = 81-52

(a² + b² + c²) = 29 (Answer)

Answered by MysticalMagic
67

 \large \green {\colorbox{cyan}{ \colorbox{black}{answer}}}

29

\large \green {\colorbox{cyan}{ \colorbox{black}{explanation}}}

 \sf Given \: a + b + c = 9 \: and \: ab + bc + ac = 26

 \sf we \: know \: {(a + b + c)}^{2}  =  {a}^{2} +  {b}^{2}  +  {c}^{2}

 \sf  + \:  2ab \:  + 2bc \:  + 2ca

 \sf⇒ {(a + b + c)}^{2}  =  {a}^{2} +  {b}^{2} +  {c}^{2}  + 2(a + b + c)

putting the values here we get

 \sf  {(9)}^{2} =  {a}^{2}  +  {b}^{2} +  {c}^{2}   + 2 \: (26)

 \sf⇒81 =   {a}^{2}  +  {b}^{2}  +   {c}^{2} + 52

 \sf⇒ {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 81 - 52 = 29

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \large \boxed {hope \: it \: helps}

:)

Similar questions