If a + b + c = 9 and ab + bc + ac = 40, then find the value for : a^2 + b^2 + c^2
Answers
Given:-
☆Value of a+b+c=9
☆Value of ab+bc+ac=40
To find:-
☆Value of a²+b²+c²
Solution:-
By squaring both sides,in the equation a+b+c=9,we get:-
=>(a+b+c)²=(9)²
We know that:-
=>(a+b+c)²=a²+b²+c²+2(ab+bc+ac)
=>a²+b²+c²+2(ab+bc+ac)=81
=>a²+b²+c²+2(40)=81
=>a²+b²+c²+80=81
=>a²+b²+c²=81-80
=>a²+b²+c²=1
Thus,value of a²+b²+c² is 1.
Some extra information:-
The common identities used to solve this type of problems are:-
•(a+b)²=a²+b²+2ab
•(a-b)²=a²+b²-2ab
•a²-b²= (a-b)(a+b)
•(a+b)³=a³+b³+3ab(a+b)
•(a-b)³=a³-b³-3ab(a-b)
•a³+b³=(a+b)(a²+b²-ab)
•a³-b³=(a-b)(a²+b²+ab)
•(a+b+c)²=a²+b²+c²+2(ab+bc+ac)
Solution :
Given that,
=> a + b + c = 9
on squareing both side we get
=> a² + b² + c² = 9²
=> a² + b ² + c² + 2ab + 2bc + 2ac = 81
=> a² + b² + c² + 2(ab + bc + ac) = 81
on putting ab + bc + ac = 40 we get
=> a² + b² + c² + 2 x 40 = 81
=> a² + b² + c² = 81 - 80
=> 1
=> value for a² + b² + c² is 1