If a + b + c = 9 and ab + bc + ca = 18, then what is the value of a3 + b3 + c3 – 3abc?
A) 189 B) 243 C) 361 D) 486
Answers
Answered by
13
Step-by-step explanation:
Given -
- a + b + c = 9
- ab + bc + ca = 18
→ -(-ab - bc - ca) = 18
→ -ab - bc - ca = -18
To Find -
- Value of a³ + b³ + c³ - 3abc is what ?
As we know that :-
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Now,
- a + b + c = 9
Squaring both sides :-
→ (a + b + c)² = (9)²
→ a² + b² + c² + 2(ab + bc + ca) = 81
→ a² + b² + c² + 2(18) = 81
→ a² + b² + c² = 81 - 36
→ a² + b² + c² = 45
Now,
→ a³ + b³ + c³ - 3abc = (9)(45 - 18)
→ a³ + b³ + c³ - 3abc = 9 × 27
→ a³ + b³ + c³ - 3abc = 243
Hence,
Option 2 is correct.
Similar questions