if a + b + c = 9 and ab + bc + ca = 23 find the value of a^2 + b^2 + c^2 ?
Answers
Answered by
6
(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ca (formula)
(a+b+c)^2 = a^2 + b^2+ c^2 + 2(ab+bc+ca)
9^2= a^2 + b^2 + c^2 + 2(23)
81 = a^2 + b^2 + c^2 + 46
144–46 = a^2 + b^2 + c^2
35 = a^2 + b^2 + c^2
Hope this helps!
Answered by
3
Answer:
35
Step-by-step explanation:
Given : a + b + c = 9 and ab + bc + ca = 23
therefore we have the formula that
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
⇒ ( 9 ) ² = a² + b² + c² + 2(23)
⇒ 81 = a² + b² + c² + 46
⇒ 81 - 46 = a² + b² + c²
⇒ 35 = a² + b² + c²
Similar questions
Geography,
6 months ago