Math, asked by sanjanasarangi2503, 11 months ago

If a+b+c =9 and ab+bc+ca=23, find the value of a²+b²+c².

Answers

Answered by dhruvsh
4

Answer:

a+b+c = 9

Squaring both sides,

a^2 + b^2 + c^2 + 2(ab+bc+ca) = 81

a^2 + b^2 +c^2 = 81 - 2(23) = 81-46 = 35

Hope this helps you !

Answered by nikitasingh79
2

Given : a + b + c = 9 and ab + bc + ca = 23

To find : The value of a² + b² + c².

Solution :

On Squaring both sides, (a + b + c)² = 9²

a² + b² + c² + 2(ab + bc + ca) = 81

[By using an identity (a + b + c)² = a² + b² + c² + 2ab + 2 bc + 2 ca)]

a² + b² + c² + 2(23) = 81

a² + b² + c² + 46 = 81

a² + b² + c² = 81 - 46

a² + b² + c² = 35

Hence, the value of a² + b² + c² is  35.

HOPE THIS ANSWER WILL HELP YOU…..

 

Similar questions :

If a²+b²+c² =16, and ab + bc + ca=10, find the value of a+b+c.

brainly.in/question/15897602

If a+b=10 and ab=16, find the value of a²– ab+b²and a²+ab+b²

brainly.in/question/15897799

Similar questions