if a + b + c = 9 and ab + bc + ca = 23 , then the value of a square + b square + c square equal to
Answers
Answered by
0
Answer:
58
Step-by-step explanation:
Using identity :-
(a+b+c)^2 = a^2 + b^2 + c^2 + ab + bc + ca
=> a^2 + b^2 + c^2 = (a+b+c)^2 - (ab + bc + ca)
=> a^2 + b^2 + c^2 = (9)^2 - (23)
=> a^2 + b^2 + c^2 = 81 - 23
=> a^2 + b^2 + c^2 = 58
Hope this helps
punit2279:
Formula galat h (a+b+c)² ka
Answered by
2
Answer:
a²+b²+c²= 35
Step-by-step explanation:
Given :- a+b+c = 9__(i)
ab+bc+ca = 23__(ii)
Now in eq_(i) Squaring both sides, we get
=(a+b+c)²= (9) ²
= (a+b+c) (a+b+c) = 81
= a²+b²+ c²+ 2ab + 2bc + 2ca = 81
= a²+b²+c² + 2( ab+bc+ca) = 81
= a²+b²+c²+ 2 ( 23 ) = 81
= a²+b²+c² + 46 = 81
= a²+b²+c² = 81-46
= a²+b²+c² = 35 Ans
Similar questions