Math, asked by kavithabijuGouri, 1 year ago

If a+b+c=9 and
ab+bc+ca=26 find a^2+b^2+c^2

Answers

Answered by atul103
58
Hi dear friend!!

here is the your Answer
_____________________________

a + b + c = 9 \\ ab + bc + ca = 26 \\  \\ now \\  \\ (a + b + c {)}^{2} =  {a }^{2}   +  {b}^{2}  +  {c}^{2}  + 2ab + 2bc + 2ca \\ now \: putting \: the \: value \\  \\  {9}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2} + 2 \times 26 \\  {a}^{2}  +  {b}^{2}  +  {c}^{2}  = 81 - 52 \\  {a}^{2}  +  {b }^{2}  +  {c}^{2}  = 29 \: ans \\  \\ hope \: its \: helpful
Answered by Anonymous
23
In this identity will use that is, (a+b+c)²=a²+b²+c²+2(ab+bc+ca)
9²=a²+b²+c²+2(26)
81=a²+b²+c²+52
a²+b²+c²=81-52
a²+b²+c²=29
Similar questions