Math, asked by BhaviJain01, 16 days ago

If a + b + c = 9 and ab + bc + ca = 26, find a^3 + b^3 +c^3 -3abc.

Answers

Answered by XxItzAdyashaxX
3

Answer:

We know that one of the identity is (a+b+c)

2

=a

2

+b

2

+c

2

+2(ab+bc+ac) and we are given that a+b+c=9 and ab+bc+ac=26, therefore, we have:

(a+b+c)

2

=a

2

+b

2

+c

2

+2(ab+bc+ac)

⇒9

2

=a

2

+b

2

+c

2

+(2×26)

⇒81=a

2

+b

2

+c

2

+52

⇒a

2

+b

2

+c

2

=81−52

⇒a

2

+b

2

+c

2

=29

Hence, a

2

+b

2

+c

2

=29

Answered by shayantyagi007
0

Answer:

replace your no with these

Step-by-step explanation:

We know that one of the identity is (a+b+c)  

2

=a  

2

+b  

2

+c  

2

+2(ab+bc+ac) and we are given that a+b+c=9 and ab+bc+ac=26, therefore, we have:

(a+b+c)  

2

=a  

2

+b  

2

+c  

2

+2(ab+bc+ac)

⇒9  

2

=a  

2

+b  

2

+c  

2

+(2×26)

⇒81=a  

2

+b  

2

+c  

2

+52

⇒a  

2

+b  

2

+c  

2

=81−52

⇒a  

2

+b  

2

+c  

2

=29

Hence, a  

2

+b  

2

+c  

2

=29

Similar questions