If a + b + c = 9 and ab + bc + ca = 26, find a^3 + b^3 +c^3 -3abc.
Answers
Answered by
3
Answer:
We know that one of the identity is (a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ac) and we are given that a+b+c=9 and ab+bc+ac=26, therefore, we have:
(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ac)
⇒9
2
=a
2
+b
2
+c
2
+(2×26)
⇒81=a
2
+b
2
+c
2
+52
⇒a
2
+b
2
+c
2
=81−52
⇒a
2
+b
2
+c
2
=29
Hence, a
2
+b
2
+c
2
=29
Answered by
0
Answer:
replace your no with these
Step-by-step explanation:
We know that one of the identity is (a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ac) and we are given that a+b+c=9 and ab+bc+ac=26, therefore, we have:
(a+b+c)
2
=a
2
+b
2
+c
2
+2(ab+bc+ac)
⇒9
2
=a
2
+b
2
+c
2
+(2×26)
⇒81=a
2
+b
2
+c
2
+52
⇒a
2
+b
2
+c
2
=81−52
⇒a
2
+b
2
+c
2
=29
Hence, a
2
+b
2
+c
2
=29
Similar questions