if a+b+c=9 and ab+bc+ca=26 find a2+b2+c2
Answers
Answered by
3
a + b +c = 9
[tex] a^{2} + b^{2} + c^{2} = (a + b + c)^{2} -2ab - 2ac -2bc [/tex]
a^2 + b^2 +c^2 = (a + b + c)^2 -2(ab + bc +ac)
a^2 + b^2 + c^2 = (9)^2 -2(26)
a^2 + b^2 + c^2 = 81 - 52
= 29
[tex] a^{2} + b^{2} + c^{2} = (a + b + c)^{2} -2ab - 2ac -2bc [/tex]
a^2 + b^2 +c^2 = (a + b + c)^2 -2(ab + bc +ac)
a^2 + b^2 + c^2 = (9)^2 -2(26)
a^2 + b^2 + c^2 = 81 - 52
= 29
aqueel2:
right ans
Answered by
0
Answer:
29
Step-by-step explanation:
(a+b+c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
(9)2= a2 +b2 +c2 + 2 (ab+bc+ca)
81=a2+b2+c2+2(26)
81= a2+b2+c2+52
81-52 = a2+b2+c2
29= a2+b2+c2
hope it helps
Similar questions