Math, asked by puneet28, 1 year ago

if a+b+c=9 and ab+bc+ca=26 find a2+b2+c2

Answers

Answered by Anonymous
3
a + b +c = 9
[tex] a^{2} + b^{2} + c^{2} = (a + b + c)^{2} -2ab - 2ac -2bc [/tex]
a^2 + b^2 +c^2 = (a + b + c)^2  -2(ab + bc +ac)
a^2 + b^2 + c^2 = (9)^2   -2(26)
a^2 + b^2 + c^2 = 81 - 52
                          = 29

aqueel2: right ans
aqueel2: your formula is incorrect
aqueel2: no you are right
Answered by kisna04
0

Answer:

29

Step-by-step explanation:

(a+b+c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

(9)2= a2 +b2 +c2 + 2 (ab+bc+ca)

81=a2+b2+c2+2(26)

81= a2+b2+c2+52

81-52 = a2+b2+c2

29= a2+b2+c2

hope it helps

Similar questions