if a + b + c =9 and AB + BC + CA = 26 so find a square + b square + c square
Answers
Answered by
3
Given that
(a + b + c) = 9
Let's sqaure both the sides :)
=> (a + b + c)² = (9)²
=> a² + b² + c² + 2ab + 2bc + 2ca = 81
[Using the identity]
=> a² + b² + c² + 2(ab + bc + ca) = 81
[By taking 2 as common]
But it's given that ab + bc + ca = 26
=> a² + b² + c² + 2(26) = 81
=> a² + b² + c² + 52 = 81
=> a² + b² + c² = 81 - 52
=> a² + b² + c² = 29.
Hope it helps dear friend ☺️✌️
(a + b + c) = 9
Let's sqaure both the sides :)
=> (a + b + c)² = (9)²
=> a² + b² + c² + 2ab + 2bc + 2ca = 81
[Using the identity]
=> a² + b² + c² + 2(ab + bc + ca) = 81
[By taking 2 as common]
But it's given that ab + bc + ca = 26
=> a² + b² + c² + 2(26) = 81
=> a² + b² + c² + 52 = 81
=> a² + b² + c² = 81 - 52
=> a² + b² + c² = 29.
Hope it helps dear friend ☺️✌️
Similar questions