If a + b + c = 9 and ab + bc + ca = 26 then a^2 + b^2 + c^2 = -----
o
Answers
Answered by
1
Given:-
- a + b + c = 9
- ab + bc + ca = 26
To find:-
- a² + b² + c²
Answer:-
Given that,
a + b + c = 9
On squaring both sides,
→ (a + b + c)² = (9)²
Expanding LHS using the identity,
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
→ a² + b² + c² + 2(ab + bc + ca) = 81
Putting the values given in the question,
→ a² + b² + c² + 2(26) = 81
→ a² + b² + c² + 52 = 81
→ a² + b² + c² = 81 - 52
→ a² + b² + c² = 29 Ans
Extra knowledge:-
- (a + b)² = a² + b² + 2ab
- (a - b)² = a² + b² - 2ab
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- a³ + b³ = (a + b)(a² + b² - ab)
- a³ - b³ = (a - b)(a² + b² + ab)
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
- a³ + b³ + c³ - 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
Answered by
0
Answer:
(a+b+c)^2=a^2 +b^2+c^2+2ab+2bc+2ac
(9)^2=a^2+b^2+c^2+2(ab+bc+ac)
81= a^2+b^2+c^2+2×26
a^2+b^2+c^2=81-52
=29
Similar questions