if a+b+c=9 and ab+bc+ca=26 then find the value of a^3+b^3+c^3-3abc
Answers
Answered by
6
a+b+c = 9
Squaring on both sides.
(a+b+c)² = 9²
a²+b²+c²+2(ab+bc+ca)= 81
a² + b² + c² +2 (26) = 81.
a² + b² + c² + 52 = 81.
a² + b² + c² = 81-52
a² + b² + c² = 29
WE KNOW THAT
a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)
= [a+b+c] [a²+b²+c²- ( ab+bc+ca)]
= 9 [ 29 - 26 ]
= 9 [ 3]
= 27.
:)
Squaring on both sides.
(a+b+c)² = 9²
a²+b²+c²+2(ab+bc+ca)= 81
a² + b² + c² +2 (26) = 81.
a² + b² + c² + 52 = 81.
a² + b² + c² = 81-52
a² + b² + c² = 29
WE KNOW THAT
a³+b³+c³-3abc = (a+b+c) (a²+b²+c²-ab-bc-ca)
= [a+b+c] [a²+b²+c²- ( ab+bc+ca)]
= 9 [ 29 - 26 ]
= 9 [ 3]
= 27.
:)
Answered by
0
Answer:
Hence the value of a 3 + b 3 + c 3 - 3 a b c is 27.
Similar questions
Biology,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago